
2025/06/04 21:09 1/12 D64 (Electronic form of a physical 1541 disk)

RetroWiki - https://wiki.retrograde.dk/

D64 (Electronic form of a physical 1541 disk)

Document revision: 1.11
Last updated: Nov 7, 2008
Compiler/Editor: Peter Schepers
Contributors/sources: Immers/Neufeld: “Inside Commodore DOS”, Wolfgang Moser
Wiki rendition: Eek/Retrograde

Introduction

Note: This document will try to explain the layout of the 1541 disks, as well as some of the files they
contain. However, I do not explain GEOS or REL files here. See the file GEOS.TXT or REL.TXT for more
information on those file types or disk structure.

Special thanks to Wolfgang Moser for his work on identifying the differences between the various
'Speeder' DOS's that exist. This information is included in a table later in this document.

In this wiki rendition, formatting - especially around tables - has been reworked to make the
information more easy to consume.

File Format

First and foremost we have D64, which is basically a sector-for-sector copy of a 1540/1541 disk. There
are several versions of these which I will cover shortly. The standard D64 is a 174848 byte file
comprised of 256 byte sectors arranged in 35 tracks with a varying number of sectors per track for a
total of 683 sectors. Track counting starts at 1, not 0, and goes up to 35. Sector counting starts at 0,
not 1, for the first sector, therefore a track with 21 sectors will go from 0 to 20.

The original media (a 5.25“ disk) has the tracks laid out in circles, with track 1 on the very outside of
the disk (closest to the sides) to track 35 being on the inside of the disk (closest to the inner hub
ring). Commodore, in their infinite wisdom, varied the number of sectors per track and data densities
across the disk to optimize available storage, resulting in the chart below. It shows the sectors/track
for a standard D64. Since the outside diameter of a circle is the largest (versus closer to the center),
the outside tracks have the largest amount of storage.

Track Sectors/Track No. of Sectors Storage in Bytes
1-17 21 357 7820

18-24 19 133 7170
25-30 18 108 6300

(*) 31-40 17 85 6020

683 sectors total (for a 35 track image)

Track No. of Sectors No. of Sectors In D64 Offset
1 21 0 $00000
2 21 21 $01500

https://ist.uwaterloo.ca/~schepers/formats/D64.TXT
https://wiki.retrograde.dk/doc:cbm:geos
https://wiki.retrograde.dk/doc:cbm:rel

Last update: 2020/05/31 23:23 doc:cbm:disk:image:d64 https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

https://wiki.retrograde.dk/ Printed on 2025/06/04 21:09

Track No. of Sectors No. of Sectors In D64 Offset
3 21 42 $02A00
4 21 63 $03F00
5 21 84 $05400
6 21 105 $06900
7 21 126 $07E00
8 21 147 $09300
9 21 168 $0A800

10 21 189 $0BD00
11 21 210 $0D200
12 21 231 $0E700
13 21 252 $0FC00
14 21 273 $11100
15 21 294 $12600
16 21 315 $13B00
17 21 336 $15000
18 19 357 $16500
19 19 376 $17800
20 19 395 $18B00
21 19 414 $19E00
22 19 433 $1B100
23 19 452 $1C400
24 19 471 $1D700
25 18 490 $1EA00
26 18 508 $1FC00
27 18 526 $20E00
28 18 544 $22000
29 18 562 $23200
30 18 580 $24400
31 17 598 $25600
32 17 615 $26700
33 17 632 $27800
34 17 649 $28900
35 17 666 $29A00

(*) 36 17 683 $2AB00
(*) 37 17 700 $2BC00
(*) 38 17 717 $2CD00
(*) 39 17 734 $2DE00
(*) 40 17 751 $2EF00

(*) Tracks 36-40 apply to 40-track images only

The directory track should be contained totally on track 18. Sectors 1-18 contain the entries and
sector 0 contains the BAM (Block Availability Map) and disk name/ID. Since the directory is only 18
sectors large (19 less one for the BAM), and each sector can contain only 8 entries (32 bytes per
entry), the maximum number of directory entries is 18 * 8 = 144. The first directory sector is
always 18/1, even though the t/s pointer at 18/0 (first two bytes) might point somewhere else. It

2025/06/04 21:09 3/12 D64 (Electronic form of a physical 1541 disk)

RetroWiki - https://wiki.retrograde.dk/

then follows the same chain structure as a normal file, using a sector interleave of 3. This makes the
chain links go 18/1, 18/4, 18/7 etc.

Note that you can extend the directory off of track 18, but only when reading the disk or image.
Attempting to write to a directory sector not on track 18 will cause directory corruption. See the
section below called Non-Standard & Long Directories.

Each directory sector has the following layout (18/1 partial dump):

Offset Data Comment

$00

12 04 81 11 00 4E 41 4D 45 53 20 26 20
50 4F 53
49 54 A0 A0 A0 00 00 00 00 00 00 00 00
00 15 00

← notice the T/S link to 18/4 ($12/$04)

$20

00 00 84 11 02 41 44 44 49 54 49 4F 4E
41 4C 20
49 4E 46 4F A0 11 0C FE 00 00 00 00 00
00 61 01

← and how its not here ($00/$00)

The first two bytes of the sector ($12/$04) indicate the location of the next track/sector of the
directory (18/4). If the track is set to $00, then it is the last sector of the directory. It is possible,
however unlikely, that the directory may not be competely on track 18 (some disks do exist like this).
Just follow the chain anyhow.

When the directory is done, the track value will be $00. The sector link should contain a value of $FF,
meaning the whole sector is allocated, but the actual value doesn't matter. The drive will return all
the available entries anyways. This is a breakdown of a standard directory sector and entry:

Sector Offset Content
$00-1F First directory entry (see below for breakdown)

$20-3F
Second dir entry.
From now on the first two bytes of each entry in this sector should be $00 $00, as
they are unused.

$40-5F Third dir entry
$60-7F Fourth dir entry
$80-9F Fifth dir entry
$A0-BF Sixth dir entry
$C0-DF Seventh dir entry
$E0-FF Eighth dir entry

This is a breakdown of the first directory entry:

Dir Entry Offset Content

$00-01 Track/Sector location of next directory sector
($00 $00 if not the first entry in the sector)

$02 File type (see below for breakdown)
$03-04 Track/sector location of first sector of file
$05-14 16 character filename (in PETASCII, padded with $A0)
$15-16 Track/Sector location of first side-sector block (REL file only)

$17 REL file record length (REL file only, max. value 254)
$18-1D Unused (except with GEOS disks)

Last update: 2020/05/31 23:23 doc:cbm:disk:image:d64 https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

https://wiki.retrograde.dk/ Printed on 2025/06/04 21:09

Dir Entry Offset Content

$1E-1F File size in sectors, low/high byte order ($1E+$1F*256).
The approx. filesize in bytes is ≤ #sectors * 254

This is a breakdown of the file type byte:

File type
Typical values for this location are:

$00: Scratched (deleted file entry)
$80: DEL
$81: SEQ
$82: PRG
$83: USR
$84: REL

Bit 0-3: The actual filetype
%000 (0): DEL
%001 (1): SEQ
%010 (2): PRG
%011 (3): USR
%100 (4): REL
Values 5-15 are illegal, but if used will produce very strange results. The 1541 is
inconsistent in how it treats these bits. Some routines use all 4 bits, others ignore
bit 3, resulting in values from 0-7.

Bit 4: Not used
Bit 5: Used only during SAVE-@ replacement
Bit 6: Locked flag (Set produces ”>“ locked files)
Bit 7: Closed flag (Not set produces “*”, or “splat” files)

Files, on a standard 1541, are stored using an interleave of 10. Assuming a starting track/sector of
17/0, the chain would run 17/0, 17/10, 17/20, 17/8, 17/18, etc.

Note: No GEOS entries are listed in the above description. See the GEOS.TXT file for GEOS info.

Non-Standard & Long Directories

Most Commdore floppy disk drives use a single dedicated directory track where all filenames are
stored. This limits the number of files stored on a disk based on the number of sectors on the
directory track. There are some disk images that contain more files than would normally be allowed.
This requires extending the directory off the default directory track by changing the last directory
sector pointer to a new track, allocating the new sectors in the BAM, and manually placing (or moving
existing) file entries there. The directory of an extended disk can be read and the files that reside
there can be loaded without problems on a real drive. However, this is still a very dangerous practice
as writing to the extended portion of the directory will cause directory corruption in the non-extended
part. Many of the floppy drives core ROM routines ignore the track value that the directory is on and
assume the default directory track for operations.

To explain: assume that the directory has been extended from track 18 to track 19/6 and that the
directory is full except for a few slots on 19/6. When saving a new file, the drive DOS will find an
empty file slot at 19/6 offset $40 and correctly write the filename and a few other things into this
slot. When the file is done being saved the final file information will be written to 18/6 offset $40

https://wiki.retrograde.dk/doc:cbm:geos

2025/06/04 21:09 5/12 D64 (Electronic form of a physical 1541 disk)

RetroWiki - https://wiki.retrograde.dk/

instead of 19/6 causing some directory corruption to the entry at 18/6. Also, the BAM entries for the
sectors occupied by the new file will not be saved and the new file will be left as a SPLAT (*) file.

Attempts to validate the disk will result in those files residing off the directory track to not be
allocated in the BAM, and could also send the drive into an endless loop. The default directory track is
assumed for all sector reads when validating so if the directory goes to 19/6, then the validate code
will read 18/6 instead. If 18/6 is part of the normal directory chain then the validate routine will loop
endlessly.

BAM layout

The layout of the BAM area (sector 18/0) is a bit more complicated…

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 12 01 41 00 12 FF F9 17 15 FF FF 1F 15 FF FF 1F
10 15 FF FF 1F 12 FF F9 17 00 00 00 00 00 00 00 00
20 00 00 00 00 0E FF 74 03 15 FF FF 1F 15 FF FF 1F
30 0E 3F FC 11 07 E1 80 01 15 FF FF 1F 15 FF FF 1F
40 15 FF FF 1F 15 FF FF 1F 0D C0 FF 07 13 FF FF 07
50 13 FF FF 07 11 FF CF 07 13 FF FF 07 12 7F FF 07
60 13 FF FF 07 0A 75 55 01 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 01 08 00 00 03 02 48 00
80 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01
90 53 48 41 52 45 57 41 52 45 20 31 20 20 A0 A0 A0
A0 A0 A0 56 54 A0 32 41 A0 A0 A0 A0 00 00 00 00 00
B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Sector Offset Content

$00-01 Track/Sector location of the first directory sector (should be set to 18/1 but it doesn't
matter, and don't trust what is there, always go to 18/1 for first directory entry)

$02 Disk DOS version type (see note below): $41 (“A”)
$03 Unused

$04-8F BAM entries for each track, in groups of four bytes per track, starting on track 1 (see
below for more details)

$90-9F Disk Name (padded with $A0)
$A0-A1 Filled with $A0
$A2-A3 Disk ID

$A4 Usually $A0
$A5-A6 DOS type, usually “2A”
$A7-AA Filled with $A0

$AB-FF Normally unused ($00), except for 40 track extended format, see the following two
entries:

$AC-BF DOLPHIN DOS track 36-40 BAM entries (only for 40 track)

Last update: 2020/05/31 23:23 doc:cbm:disk:image:d64 https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

https://wiki.retrograde.dk/ Printed on 2025/06/04 21:09

Sector Offset Content
$C0-D3 SPEED DOS track 36-40 BAM entries (only for 40 track)

Note: The BAM entries for SPEED, DOLPHIN and ProLogic DOS use the same layout as standard BAM
entries.

One of the interesting things from the BAM sector is the byte at offset $02, the DOS version byte. If it
is set to anything other than $41 or $00, then we have what is called “soft write protection”. Any
attempt to write to the disk will return the “DOS Version” error code 73 ,“CBM DOS V 2.6 1541”.
The 1541 is simply telling you that it thinks the disk format version is incorrect. This message will
normally come up when you first turn on the 1541 and read the error channel. If you write a $00 or a
$41 into 1541 memory location $00FF (for device 0), then you can circumvent this type of write-
protection, and change the DOS version back to what it should be.

The BAM entries require a bit (no pun intended) more of a breakdown. Take the first entry at bytes
$04-$07 ($12 $FF $F9 $17). The first byte ($12) is the number of free sectors on that track. Since we
are looking at the track 1 entry, this means it has 18 (decimal) free sectors. The next three bytes
represent the bitmap of which sectors are used/free. Since it is 3 bytes (8 bits/byte) we have 24 bits
of storage. Remember that at most, each track only has 21 sectors, so there are a few unused bits.

Offset Data Comment
$04-07 12 FF F9 17 Track 1 BAM
$08-0B 15 FF FF FF Track 2 BAM
$0C-0F 15 FF FF 1F Track 3 BAM

… … …
$8C-8F 11 FF FF 01 Track 35 BAM

These entries must be viewed in binary to make any sense. We will use the first entry (track 1) at
bytes 04-07:

$FF=%11111111, $F9=%11111001, $17=%00010111

In order to make any sense from the binary notation, flip the bits around.

 111111 11112222
 01234567 89012345 67890123

 11111111 10011111 11101000
 ^ ^
sector 0 sector 20

Since we are on the first track, we have 21 sectors, and only use up to the bit 20 position. If a bit is on
(1), the sector is free. Therefore, track 1 has sectors 9,10 and 19 used, all the rest are free. Any
leftover bits that refer to sectors that don't exist, like bits 21-23 in the above example, are set to
allocated.

Each filetype has its own unique properties, but most follow one simple structure. The first file sector
is pointed to by the directory and follows a t/s chain, until the track value reaches $00. When this
happens, the value in the sector link location indicates how much of the sector is used. For example,
the following chain indicates a file 6 sectors long, and ends when we encounter the $00/$34 chain.
At this point the last sector occupies from bytes $02-$34.

2025/06/04 21:09 7/12 D64 (Electronic form of a physical 1541 disk)

RetroWiki - https://wiki.retrograde.dk/

1 2 3 4 5 6
17/0

(11/00)
17/10

(11/0A)
17/20

(11/14)
17/1

(11/01)
17/11

(11/0B)
0/52

(0/34)

Variations on the D64 layout

These are some variations of the D64 layout:

Standard 35 track layout but with 683 error bytes added on to the end of the file. Each byte of1.
the error info corresponds to a single sector stored in the D64, indicating if the sector on the
original disk contained an error. The first byte is for track 1/0, and the last byte is for track
35/16.
A 40 track layout, following the same layout as a 35 track disk, but with 5 extra tracks. These2.
contain 17 sectors each, like tracks 31-35. Some of the PC utilities do allow you to create and
work with these files. This can also have error bytes attached like variant #1.
The Commodore 128 allowed for “auto-boot” disks. With this, t/s 1/0 holds a specific byte3.
sequence which the computer recognizes as boot code. See the document C128BOOT.TXT for
more info.

Below is a small chart detailing the standard file sizes of D64 images, 35 or 40 tracks, with or without
error bytes.

Disk type Size
35 track, no errors 174848
35 track, 683 error bytes 175531
40 track, no errors 196608
40 track, 768 error bytes 197376

The following table (provided by Wolfgang Moser) outlines the differences between the standard 1541
DOS and the various “speeder” DOS's that exist. The 'header 7/8' category is the 'fill bytes' as the end
of the sector header of a real 1541 disk See the document G64.TXT for a better explanation of these
bytes.

Disk format Tracks Header 7/8
allsechdrs Dos type DiskDos

vs.type
Original CBM DOS v2.6 35 $0f $0f “2A” $41/“A”
SpeedDOS+ (*) 40 $0f $0f “2A” $41/“A”
ProfessionalDOS Initial
(Version 1/Prototype)

35
40

$0f $0f
$0f $0f

“2A”
“2A”

$41/“A”
$41/“A”

ProfDOS Release 40 $0f $0f “4A” $41/“A”
Dolphin-DOS 2.0/3.0
Dolphin-DOS 2.0/3.0

35
40

$0f $0f
$0d $0f

“2A”
“2A”

$41/“A”
$41/“A”

PrologicDOS 1541
PrologicDOS 1541
ProSpeed 1571 2.0
ProSpeed 1571 2.0

35
40
35
40

$0f $0f
$0f $0f
$0f $0f
$0f $0f

“2A”
“2P”
“2A”
“2P”

$41/“A”
$50/“P”
$41/“A”
$50/“P”

(*) There are also clones of SpeedDOS that exist, such as RoloDOS and DigiDOS. Both are just a
change of the DOS startup string.

https://wiki.retrograde.dk/doc:cbm:c128boot
https://wiki.retrograde.dk/doc:cbm:disk:image:g64

Last update: 2020/05/31 23:23 doc:cbm:disk:image:d64 https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

https://wiki.retrograde.dk/ Printed on 2025/06/04 21:09

The location of the extra BAM information in sector 18/0, for 40 track images, will be different
depending on what standard the disks have been formatted with. SPEED DOS stores them from $C0
to $D3, DOLPHIN DOS stores them from $AC to $BF and PrologicDOS stored them right after the
existing BAM entries from $90-A3. PrologicDOS also moves the disk label and ID forward from the
standard location of $90 to $A4. 64COPY and Star Commander let you select from several different
types of extended disk formats you want to create/work with.

All three of the speeder DOS's mentioned above don't alter the standard sector interleave of 10 for
files and 3 for directories. The reason is that they use a memory cache installed in the drive which
reads the entire track in one pass. This alleviates the need for custom interleave values. They do
seem to alter the algorithm that finds the next available free sector so that the interleave value can
deviate from 10 under certain circumstances, but I don't know why they would bother.

Below is a HEX dump of a Speed DOS BAM sector. Note the location of the extra BAM info from $C0-
D3.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII
0070 12 FF FF 03 12 FF FF 03 12 FF FF 03 11 FF FF 01 תתתתתתתתתתתתתתתת

0080 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01 תתתתתתתתתתתתתתתת

0090 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0
00A0 A0 A0 30 30 A0 32 41 A0 A0 A0 A0 00 00 00 00 00 00 2A תתתתת

00B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 תתתתתתתתתתתתתתתת

00C0 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01 תתתתתתתתתתתתתתתת

00D0 11 FF FF 01 00 00 00 00 00 00 00 00 00 00 00 00 תתתתתתתתתתתתתתתת

Below is a HEX dump of a Dolphin DOS BAM sector. Note the location of the extra BAM info from $AC-
BF.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII
0070 12 FF FF 03 12 FF FF 03 12 FF FF 03 11 FF FF 01 תתתתתתתתתתתתתתתת

0080 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01 תתתתתתתתתתתתתתתת

0090 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0
00A0 A0 A0 30 30 A0 32 41 A0 A0 A0 A0 00 11 FF FF 01 00 2A תתתתת

00B0 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01 תתתתתתתתתתתתתתתת

00C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 תתתתתתתתתתתתתתתת

00D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 תתתתתתתתתתתתתתתת

Below is a HEX dump of a PrologicDOS BAM sector. Note that the disk name and ID are now located at
$A4 instead of starting at $90.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII
0070 12 FF FF 03 12 FF FF 03 12 FF FF 03 11 FF FF 01 תתתתתתתתתתתתתתתת

0080 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01 תתתתתתתתתתתתתתתת

0090 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01 תתתתתתתתתתתתתתתת

00A0 11 FF FF 01 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 A0 תתתת

00B0 A0 A0 A0 A0 A0 A0 30 30 A0 32 50 A0 A0 A0 A0 00 00 2P ת
00C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 תתתתתתתתתתתתתתתת

00D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 תתתתתתתתתתתתתתתת

2025/06/04 21:09 9/12 D64 (Electronic form of a physical 1541 disk)

RetroWiki - https://wiki.retrograde.dk/

Error codes

Here is the meaning of the error bytes added onto the end of any extended D64. The CODE is the
same as that generated by the 1541 drive controller… it reports these numbers, not the error code
we usually see when an error occurs.

Some of what comes below is taken from Immers/Neufeld book “Inside Commodore DOS”. Note the
descriptions are not completely accurate as to what the drive DOS is actually doing to
seek/read/decode/write sectors, but serve as simple examples only. The “type” field is where the
error usually occurs, whether it's searching for any SYNC mark, any header ID, any valid header, or
reading a sector.

These first errors are “seek” errors, where the disk controller is simply reading headers and looking at
descriptor bytes, checksums, format ID's and reporting what errors it sees. These errors do not
necessarily apply to the exact sector being looked for. This fact makes duplication of these errors very
unreliable.

Code Error Type 1541 error description

$03 21 SEEK

No SYNC sequence found.

Each sector data block and header block are preceeded by SYNC marks. If *no*
sync sequence is found within 20 milliseconds (only ~1/10 of a disk rotation!) then
this error is generated. This error used to mean the entire track is bad, but it does
not have to be the case. Only a small area of the track needs to be without a SYNC
mark and this error will be generated.

Converting this error to a D64 is very problematic because it depends on where
the physical head is on the disk when a read attempt is made. If it is on valid
header/sectors then it won't occur. If it happens over an area without SYNC marks,
it will happen.

$02 20 SEEK

Header descriptor byte not found (HEX $08, GCR $52)

Each sector is preceeded by an 8-byte GCR header block, which starts with the
value $52 (GCR). If this value is not found after 90 attempts, this error is
generated.

Basically, what a track has is SYNC marks, and possibly valid data blocks, but no
valid header descriptors.

$09 27 SEEK
Checksum error in header block

The header block contains a checksum value, calculated by XOR'ing the TRACK,
SECTOR, ID1 and ID2 values. If this checksum is wrong, this error is generated.

$0B 29 SEEK

Disk sector ID mismatch

The ID's from the header block of the currently read sector are compared against
the ones from the low-level header of 18/0. If there is a mismatch, this error is
generated.

Last update: 2020/05/31 23:23 doc:cbm:disk:image:d64 https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

https://wiki.retrograde.dk/ Printed on 2025/06/04 21:09

Code Error Type 1541 error description

$02 20 SEEK

Header block not found

This error can be reported again when searching for the correct header block. An
image of the header is built and searched for, but not found after 90 read
attempts. Note the difference from the first occurance. The first one only searches
for a valid ID, not the whole header.

Note that error 20 occurs twice during this phase. The first time is when a header ID is being searched
for, the second is when the proper header pattern for the sector being searched for is not found.

From this point on, all the errors apply to the specific sector you are looking for. If a read passed all
the previous checks, then we are at the sector being searched for.

Note that the entire sector is read before these errors are detected. Therefore the data, checksum
and off bytes are available.

Code Error Type 1541 error description

$04 22 READ

Data descriptor byte not found (HEX $07, GCR $55)

Each sector data block is preceeded by the value $07, the “data block” descriptor.
If this value is not there, this error is generated. Each encoded sector has actually
260 bytes. First is the descriptor byte, then follows the 256 bytes of data, a
checksum, and two “off” bytes.

$05 23 READ

Checksum error in data block

The checksum of the data read of the disk is calculated, and compared against the
one stored at the end of the sector. If there's a discrepancy, this error is
generated.

$0F 74 READ Drive Not Ready (no disk in drive or no device 1)

These errors only apply when writing to a disk. I don't see the usefulness of having these as they
cannot be present when only reading a disk.

Code Error Type 1541 error description
$06 24 WRITE Write verify (on format)

$07 25 WRITE

Write verify error

Once the GCR-encoded sector is written out, the drive waits for the sector to
come around again and verifies the whole 325-byte GCR block. Any errors
encountered will generate this error.

$08 26 WRITE
Write protect on

Self explanatory. Remove the write-protect tab, and try again.

$0A 28 WRITE
Write error

In actual fact, this error never occurs, but it is included for completeness.

This is not an error at all, but when gets reported when the read of a sector is ok.

2025/06/04 21:09 11/12 D64 (Electronic form of a physical 1541 disk)

RetroWiki - https://wiki.retrograde.dk/

Code Error Type 1541 error description

$02 00 N/A
No error.

Self explanatory. No errors were detected in the reading and decoding of the
sector.

The advantage with using the 35 track D64 format, regardless of error bytes, is that it can be
converted directly back to a 1541 disk by either using the proper cable and software on the PC, or
send it down to the C64 and writing it back to a 1541. It is the best documented format since it is also
native to the C64, with many books explaining the disk layout and the internals of the 1541.

Supporting D64 files

The D64 layout is reasonably robust, being that it is an electronic representation of a physical 1541
disk. It shares most of the 1541 attributes and it supports all file formats, since all C64 files came
from here. The only file I have found that can't be copied to a D64 is a T64 FRZ (FRoZen files), since
you lose the extra file type attribute.

Since the D64 layout seems to be an exact byte copy of a 1541 floppy, it would appear to be the
perfect format for any emulator. However, it does not contain certain vital bits of information that, as
a user, you normally don't have access to.

Preceeding each sector on a real 1541 disk is a header block which contains the sector ID bytes and
checksum. From the information contained in the header, the drive determines if there's an error on
that header (27-checksum error, 29-disk ID mismatch). The sector itself also contains info (data block
signature, checksum) that result in error detection (23 checksum, 22 data block not present, etc). The
error bytes had to be added on to the D64 image, “extending” the format to take into account the
missing info.

The disk ID is important in the copy protection of some programs. Some programs fail to work
properly since the D64 doesn't contain these ID's. These bytes would be an addition to the format
which has never been done and would be difficult to do. (As an aside, the 4-pack ZipCode files do
contain the original master disk ID, but these are lost in the conversion of a ZipCode to a D64. Only
storing one of the ID's is not enough, all the sector ID's should be kept.)

The extended track 1541 disks also presented a problem, as there are several different formats (and
how/where to store the extra BAM entries in a sector that was not designed for them, yet still remain
compatible). Because of the additions to the format (error bytes and 40 tracks) there exists 4 different
types of D64's, all recognizeable by their size.

It is also the only format that uses the sector count for the file size rather than actual bytes used. This
can present some problems when converting/copying the to another format because you may have to
know the size before you begin (see LBR format).

It also contains no consistent signature, useful for recognizing if D64 is really what it claims to be. In
order to determine if a file is a D64, you must check the file size.

Last update: 2020/05/31 23:23 doc:cbm:disk:image:d64 https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

https://wiki.retrograde.dk/ Printed on 2025/06/04 21:09

Overall Good/Bad of D64 Files

Good

D64 files are the most widely supported and well-defined format, as it is simply an electronic
version of a 1541 disk
Supports all filenames, even those with $00's in them
Filenames are padded with the standard $A0 character
Supports REL and all GEOS files
Allows complete directory customization
Because it is a random-access device, it supports fast-loaders and random sector access
PC Cluster slack-space loss is minimized since the file is a larger fixed size
Has a label (description) field
Format extensible to allow for 40-track disks
With the inclusion of error bytes, you have support for basic copy-protection
Files on a disk can easily be re-written, as long as there is free blocks

Bad

The format doesn't contain all the info from the 1541 disk (no sector header info like ID bytes,
checksums). This renders some of the original special-loaders and copy-protection useless.
You don't really know the file size of the contained C64 files in bytes, only blocks
It can't store C64s FRZ files due to FRZ files needing a special flag that a D64 can't store. This is
by no means a big problem.
It is not an expandable filetype, like LNX or T64
Unless most of the space on a D64 disk is used, you do end up with wasted space
Directory limited to 144 files maximum
Cannot have loadable files with the same names
Has no recognizeable file signature (unlike most other formats). The only reliable way to know if
a file is a D64 is by its size
It is too easy for people to muck up the standard layout
It is much more difficult to support fully, as you really need to emulate the 1541 DOS (sector
interleave, REL files, GEOS VLIR files)

From:
https://wiki.retrograde.dk/ - RetroWiki

Permanent link:
https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

Last update: 2020/05/31 23:23

https://wiki.retrograde.dk/
https://wiki.retrograde.dk/doc:cbm:disk:image:d64?rev=1590967414

	D64 (Electronic form of a physical 1541 disk)
	Introduction
	File Format
	Non-Standard & Long Directories
	BAM layout
	Variations on the D64 layout
	Error codes
	Supporting D64 files
	Overall Good/Bad of D64 Files
	Good
	Bad

