2025/07/13 07:20 1/4 G64 (raw GCR binary representation of a 1541 diskette)

G64 (raw GCR binary representation of a
1541 diskette)

e Document revision: 1.9

e Last updated: Feb 19, 2008

e Compiler/Editor: Peter Schepers

e Contributors/sources: Markus Brenner, Immers/Neufeld: “Inside Commodore DOS”, Wolfgang
Moser

* Wiki rendition: Eek/Retrograde

Introduction

This format was defined in 1998 as a cooperative effort between several emulator people, mainly Per
Hakan Sundell (author of the CCS64 C64 emulator), Andreas Boose (of the VICE CBM emulator team)
and Joe Forster/STA (the author of Star Commander). It was the first real cooperative attempt to
create a format for the emulator community which removed almost all of the drawbacks of the other
existing image formats, primarily D64. The G64 format is not specifically designed to hold only 1541
images, but they are presently the only G64 images in existance and why this document only refers
to the 1541 and D64's.

In this wiki rendition, formatting - especially around tables - has been reworked to make the
information more easy to consume.

File Format

The intention behind G64 is not to replace the widely used D64 format, as D64 works fine with the
vast majority of disks in existence. It is intended for those small percentage of programs which
demand to work with the 1541 drive in a non-standard way, such as reading or writing data in a
custom format. The best example is with speeder software such as Action Cartridge in “warp save”
mode or Vorpal and V-MAX which write track/sector data in another format other than standard GCR.
The other obvious example is copy-protected software which looks for some specific data on a track,
like the disk ID, which is not stored in a standard D64 image.

One protection method that G64 has trouble emulating is data alignment between tracks. Some
protection methods rely on data being in exact positions when the head is stepped from one track to
another. Imagine two concentric circles representing the data tracks, with a drive head reading data
from one track, stepping over to the other track and expecting to find some specific data where it is
now. Unless you can read track data from a 1541 so it is aligned with the previous track, write it into
the G64 appropriately, and also read the resulting G64 data with this alignment in mind, the
protection check will likely fail. Other methods like weak bits are also hard to emulate.

G64 has a deceptively simple layout for what it is capable of doing. We have a signature, version
byte, some predefined size values, and a series of offsets to the track data and speed zones. It is
what's contained in the track data areas and speed zones which is really at the heart of this format.

RetroWiki - https://wiki.retrograde.dk/

https://ist.uwaterloo.ca/~schepers/formats/G64.TXT
https://wiki.retrograde.dk/doc:cbm:disk:image:d64
https://wiki.retrograde.dk/doc:cbm:disk:image:d64
https://wiki.retrograde.dk/doc:cbm:disk:image:d64
https://wiki.retrograde.dk/doc:cbm:disk:image:d64
https://wiki.retrograde.dk/doc:cbm:disk:image:d64

Last update: 2020/05/31 23:36 doc:cbm:disk:image:g64 https://wiki.retrograde.dk/doc:cbm:disk:image:g64?rev=1590968166

Each track data area is simply the raw stream of GCR data, just what the read head would see when a
diskette is rotating past it. How the data gets interpreted is up to the program trying to access the
disk. Because the data is stored in such a low-level manner, just about anything can be done. Most
tracks will be in the standard format with with SYNC markers, GAP, header, data blocks and
checksums. The arrangement of the data when it is in a standard GCR sector layout is covered at the
end of this document. It is the tracks that don't follow the standard which are the reason for G64's
existance and the hardest to decode.

Below is a dump of the header, broken down into its various parts. Following that is a breakdown of
the track offset and speed zone offset areas, as they demand much more explanation.

Fix Mel

Now, why are there 84 tracks defined when a normal D64 disk only has 35 tracks? By definition, an
image of a 1541 must include all the tracks that a real 1541 can access, which is at most 42 tracks
and 42 half tracks. Even though using more than 35 tracks is not typical, it was important to define
this format from the start with what the 1541 is capable of doing, and not just what it typically does.
Some 1541 drives may have problems reading past track 40, and pushing the head past track 42
might be somewhat hazardous to the health of the drive as the head could get stuck.

The typical value seen for the maximum track size is 7928. This is the value used for 1541 images
which use standard GCR encoding. This value is determined by the fastest write speed possible
(speed zone 0), coupled with the average rotation speed of the disk (300 rpom), and assuming normal
Commodore GCR data formatting. After some math, the answer that actually comes up is 7692 bytes.
Allowing for a slower disk rotation of -3%, which would allow more data to be written, and some
rounding, 7928 bytes per track was arrived at.

Even though it might appear so, it is very important to know that this maximum track size value is not
a fixed or hard-coded value. This value depends on the what the original disk was and the GCR
encoding used. Non-1541 images such as SFD1001 or 8050 will result in different, likely larger, track
sizes. Also, disks with non-standard GCR encoding like those using V-MAX can result in tracks
exceeding 8000 bytes.

Since it is a flexible format in both track count and track byte size, file sizes can vary greatly.
However, given a few constants like 42 tracks with no halftracks, a consistent track size of 7928 bytes
and no speed offset entries, the typical file size will be 333744 bytes.

In my investigation using MNIB (a utility by Markus Brenner that allows you to nibble a 1541 diskette
to the PC in G64 format) on a cleanly formatted 1541 disk (using the built-in 1541 format command), |
saw the following numbers, compared with the defaults that MNIB uses:

Fix Mel

Note that the first size number (7720) is larger than previously mentioned track size of 7692. Why?
Likely the drive that I used to create and nibble the clean disk was rotating a little bit slower than 300
RPM (~299 RPM), so more data than normal was stored on each track. | calculated the percentage
difference between my numbers and the established benchmark of 7692, multiplied all my numbers
by this factor, and arrived at the following chart:

Fix Mel

https://wiki.retrograde.dk/ Printed on 2025/07/13 07:20

https://wiki.retrograde.dk/doc:cbm:disk:image:d64

2025/07/13 07:20 3/4 G64 (raw GCR binary representation of a 1541 diskette)

See how close the real numbers come to what MNIB uses? | can attribute the differences of a few
bytes to my own rounding errors. Therefore | conclude that the numbers MNIB uses can be taken as
the standard that all 1541-compatible G64 tracks should be created with.

All of the above calculations are shown here to establish a safe benchmark to create G64 images in
the event that someday we can copy them back to a real 1541 disk. If the G64 track size was too
large, it might happen that the track cannot be written back out. By using the above MNIB track size
numbers, this problem should be alleviated.

Below is a dump of the first section of a G64 file, showing the offsets to the data portion for each track
and half-track entry.

Fix Mel

The track offsets require some explanation. When one is set to all 0's, no track data exists for this
entry. If there is a value, it is an absolute reference into the file (starting from the beginning of the
file).

If an image stored here only contains 35 tracks (e.g. a standard 1541 disk), then all the offset values
for track 35.5 and higher will be set to 0. This can be used to detect the maximum track count when
converting to a D64 image. Since D64's cannot hold over 40 tracks, and typically only have 35, some
information will be lost when converting a G64.

From the track 1.0 entry we see it is set for $000002AC. Going to that file offset, here is what we
see...

Fix Mel

Following the track data is filler bytes. In this case, there are 368 bytes of unused space. This space
can contain anything, but for the sake of those wishing to compress these images for storage, they
should all be set to the same value. In the sample | used, these are all set to $FF.

Below is a dump of the end of the track 1.0 data area. Note the actual track data ends at address
$20B9, with the rest of the block being unused, and set to $FF.

Fix Mel

Now we can look at the speed zone area. Below is a dump of the speed zone offsets.

Fix Mel

Starting at $02AC is the first track entry (from above, it is the first entry for track 1.0)

The speed offset entries can be a little more complex. The 1541 has four speed zones defined, which
means the drive can write data at four distinct speeds. On a normal 1541 disk, these zones are as
follows:

Fix Mel

RetroWiki - https://wiki.retrograde.dk/

https://wiki.retrograde.dk/doc:cbm:disk:image:d64
https://wiki.retrograde.dk/doc:cbm:disk:image:d64

Last update: 2020/05/31 23:36 doc:cbm:disk:image:g64 https://wiki.retrograde.dk/doc:cbm:disk:image:g64?rev=1590968166

Note that you can, through custom programming of the 1541, change the speed zone of any track to
something different (change the 3 to a 0) and write data differently.

From the above speed zone sample, all the zones use 4-byte entries in lo-hi format. If the value of the
entry is less than 4, then there is no speed offset block for the track and the value is applied to the
whole track. If the value is greater than 4 then we have an actual file offset referencing a speed zone
block for the track.

In the above example shown, there were no offsets defined, so no speed zone block dump can be
shown. However, | can define what should be there. You will have a block of data, 1982 bytes long.
Each byte is encoded to represent the speed of 4 bytes in the track offset area, and is broken down as
follows:

Fix Mel

It was very smart of the designers of the G64 format to allow for two speed zone settings, one in the
offset block and another defining the speed on a per-byte basis. If you are working with a normal disk,
where each track is one constant speed, then you don't need the extra blocks of information hanging
around the image, wasting space.

What may not be obvious is the flexibility of this format to add tracks and speed offset zones at will. If
a program decides to write a track out with varying speeds, and no speed offset exist, a new block will
be created by appending it to the end of the image, and the offset pointer for that track set to point to
the new block. If a track has no offset yet, meaning it doesn't exist (like a half-track), and one needs
to be added, the same procedure applies. The location of the actual track or speed zone data is not
important, meaning they do not have to be in linear order since they are all referenced by the offsets
at the beginning of the image.

Fix Mel

From:
https://wiki.retrograde.dk/ - RetroWiki

Permanent link:
https://wiki.retrograde.dk/doc:cbm:disk:image:g64?rev=1590968166

Last update: 2020/05/31 23:36

https://wiki.retrograde.dk/ Printed on 2025/07/13 07:20

https://wiki.retrograde.dk/
https://wiki.retrograde.dk/doc:cbm:disk:image:g64?rev=1590968166

	G64 (raw GCR binary representation of a 1541 diskette)
	Introduction
	File Format

