2024/02/20 17:55 1/3

rel

*** REL (RELative file layout)

*** Document revision: 1.1

*** | ast updated: March 11, 2004

*** Compiler/Editor: Peter Schepers

*** Contributors/sources: Immers/Neufeld "Inside Commodore DOS"

This is a filetype native to CBM drive (random access) devices. On
surface it seems similar to all other filetypes, especially SEQ, but
designed to make access to data *anywhere* in the file very fast.

We start by examining a REL file directory entry...

00: 00 00 84 11 02 41 44 44 49 54 49 4F 4E 41 4C 20 ~N..ADDITIONAL®
10: 49 4E 46 4F A0 11 0C FE 00 00 00 00 00 00 61 01 INFOt.., K~~~ " a.

the
was

Bit:$00-01: Track/Sector location of next directory sector ($00 $00 if

not the first entry in the sector)
02: File type.
Typical values for this location are:
$00 - Scratched (deleted file entry)

80 - DEL

81 - SEQ

82 - PRG

83 - USR

84 - REL

Bit 0-3: The actual filetype

000 (0) - DEL
001 (1) - SEQ
010 (2) - PRG
011 (3) - USR
100 (4) - REL

Values 5-15 are illegal, but if used will produce
very strange results. The 1541 is inconsistent in
how it treats these bits. Some routines use all 4
bits, others ignore bit 3, resulting in values

from 0-7.
Bit 4: Not used
Bit 5: Used only during SAVE-@ replacement
Bit 6: Locked flag (Set produces ">" locked files)
Bit 7: Closed flag (Not set produces "*", or "splat"

files)
03-04: Track/sector location of first sector of file
05-14: 16 character filename (in PETASCII, padded with $A0)

15-16: Track/Sector location of first side-sector block (REL file

only)
17: REL file record length (REL file only, max. value 254)
18-1D: Unused (except with GEOS disks)

1E-1F: File size in sectors, low/high byte order ($1E+$1F*256).

The approx. filesize in bytes is <= #sectors * 254

The third byte ($84) indicates this entry is a REL file and that

the

RetroWiki - https://wiki.retrograde.dk/

Last update: 2020/10/26 17:39 doc:cbm:disk:rel https://wiki.retrograde.dk/doc:cbm:disk:rel

three normally empty entries at offset $15, $16 and $17 are now used as
they are explained above. It's the sector chain that this entry points to
(called the SIDE SECTORS) which are of interest here (in this case,
#17/#12). Here is a dump of that sector...

0000: 6C 13 60 FE 11 ©C 6C 13 06 69 00 00 60 00 60 @0 ~~~ "~~~ T
010: 11 62 11 ©D 11 ©3 11 6F 11 04 11 OF 11 5 11 1@ ~~~ """ """ """
020: 11 06 11 11 11 67 11 12 11 68 11 13 11 09 11 14 """~ ' """
030: 11 GA 11 ©B 10 00 10 GA 10 14 10 08 10 12 10 @6 """ "~ T
040: 10 10 10 04 10 OE 10 62 10 6C 10 01 10 6B 10 @3 ~~ "~~~
050: 10 0D 10 ©5 10 OF 10 67 10 11 10 09 10 13 OF @7 "~~~ " T
0060: OF 11 OF 05 OF OF OF 63 OF 6D OF 01 OF 6B OF @0 "~~~ """ ' """
0070: OF OA OF 14 OF @8 OF 12 OF 06 OF 10 OF 04 OF @E ~~~ """ "~ """ "
080: OF 02 OF OC OF @9 OF 13 OE 07 OE 11 OF 05 GE OF ~~~ """ " ' "
090: OE 03 GE ©D OE @1 OF OB OF 00 OFE OA OF 14 GE @8 ~~~~ "~ "~ T
0AO: OF 12 OE 06 OE 10 OE 04 OFE OE OE 02 OE OC GE @9 ~~~ """~ "'
@0BO: OE 13 6D ©7 6D 11 6D 85 OD OF @D 03 @D 6D 6D @1 ' "
0CO: @D OB 6D ©0 6D @A OD 14 ©D 68 @D 12 @D 06 6D 10 ~~ T
0DO: @D 04 6D OE 6D ©2 OD 6C ©D 69 @D 13 8C 07 6C 11 "~ """ Tt
OEO: OC 05 6C OF 6C ©3 6C 6D OC 01 OC 6B OC 00 6C GA ~~~ """ " 1T
OFO: OC 14 6C ©8 6C 12 OC 86 OC 10 OC 04 OC OE 6C 2~~~ """ "'

Bytes: $00: Track location of next side-sector ($00 if last sector)
01: Sector location of next side-sector
02: Side-sector block number (first sector is $00, the next is
$01, then $02, etc)
03: REL file RECORD size (from directory entry, max. value 254)
04-0F: Track/sector locations of the six other side-sectors. Note
the first entry is this very sector we have 1listed here.
The next is the next t/s listed at the beginning of the
sector. All of this information must be correct. If one of
these chains is $00/$00, then we have no more side sectors.
Also, all of these (up to six) side sectors must have the
same values in this range.
10-FF: T/S chains of *each* sector of the data portion. When we
get a $00/$00, we are at the end of the chain.

If the speed advantage regarding this type file file isn't obvious yet,
consider the following scenario... If we need to access record 4000, 1its
only a couple of calculations to see how many bytes into the file it is...

4000 * "record length" (254) = byte offset

Once we know this, we can calculate how many sectors into the file the
record is...

byte offset / 254 = # of sectors into REL file

The divisor value "254" in the above formula 1is the number of bytes

https://wiki.retrograde.dk/ Printed on 2024/02/20 17:55

2024/02/20 17:55 3/3 rel

useable in each sector (256 bytes less the 2 bytes used for the forward t/s
pointer) and has no relation to the "max REL record length".

Now that we know the number of sectors, we can 1look it wup in our
side-sector tables to see where the record is. The speed of this system 1is
truly amazing, given the era of the C64, and a floppy drive.

From:
https://wiki.retrograde.dk/ - RetroWiki

Permanent link:
https://wiki.retrograde.dk/doc:cbm:disk:rel

Last update: 2020/10/26 17:39

RetroWiki - https://wiki.retrograde.dk/

https://wiki.retrograde.dk/
https://wiki.retrograde.dk/doc:cbm:disk:rel

